QMSA Letters, 3(2025)

Spin-layers and packing of large spin-networks

Reino Laatikainen, Pekka Laatikainen and Henri Martonen Spin Discoveries Ltd., Kuopio, Finland

Last update Jan. 10th, 2025

Eight spins, Yess!

LAOCOON group, which gave the name for the early QMSA program

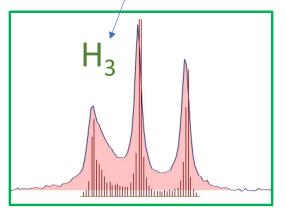
3 Layers, yeah!

From LAOCOON to ChemAdder

Spin-layers

How to simulate the pentyl CH₃ signal

- The A3-particle is strongly coupled to BB' particle, which leads to the characteristic triplet. The BB' particle forms here the 1st Spin-Layer.
- The A3-particle couples to CC' particle with ⁴J couplings which are not usually resolved with normal line-width: The CC' particle forms here the 2nd Spin-Layer.
- The A3-particle couplings to DD' particle are very small and may lead at most to small broadening of triplet lines, DD' forms the 3rd Spin-Layer... However, DD' is coupled strongly to CC' which is coupled to BB', and if the chemical shift differences are small (as they typically are for (CH₂)_n-systems), also the 2nd and 3rd layer particles affect the outlook of the A₃-triplet, through *the second-order effects*.


Structure: System: Layer: H₃C_A-C_BH₂-C_CH₂-C_DH₂-C_EH₂- X BB' CC' DD' EE'

0 1 2 3 4

To get nearly complete description for the CH₃ signal, one needs the 3 layers, and to optimize the BCD chemical shifts! ChemAdder builds up automatically the sub-systems when the number of layers is given. The sub-systems giving the BB', CC', DD' and EE' transitions are built up in the same way .. See the octyl simulation on next page.

Spin-system packing

- Compression of spin-networks
 - XX'RR'KK'BB'CC'DD'EE'H₃ \rightarrow XX'RR'KK'BB'CC' + KK'BB'CC'DD'EE H₃ + DD'EE'H₃. The <u>underlined</u> species are got from the system.
 - Transitions separated by < 0.01 Hz and belonging to the same species are combined, if also their derivatives are similar.
 - 58 000 000 \rightarrow 24 000 Transition, from 64 to 4 sec
- Multithreading
 - Analysis of 16 serum samples: 16 min → 4 min.

"Spin dust"

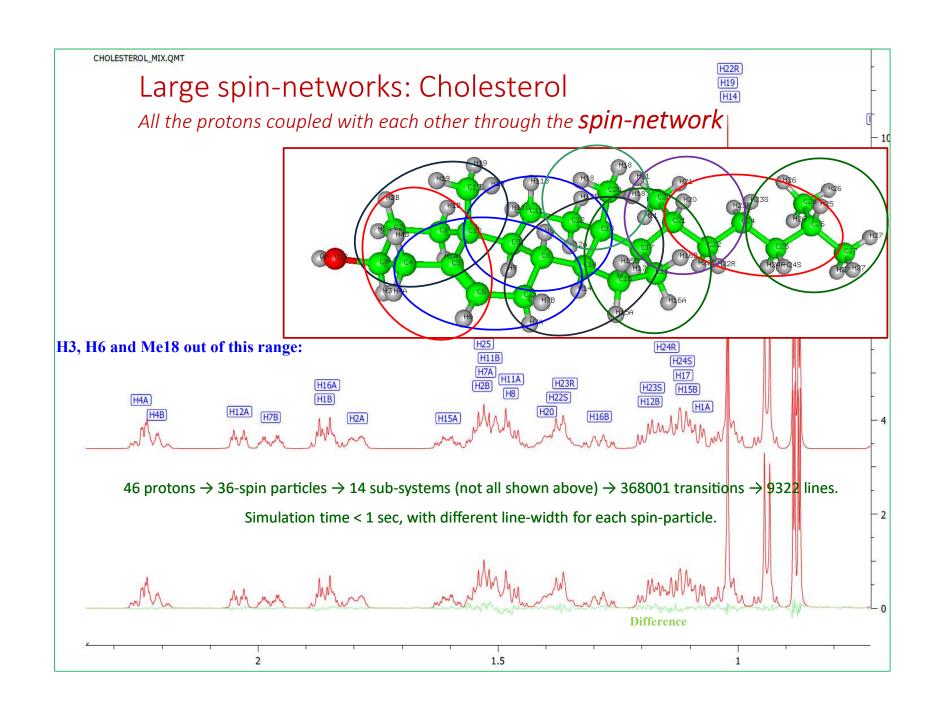
The H_3 -signal is composed of thousands of non-degenerate transitions – which yield its diagnostic outlook.

RR'

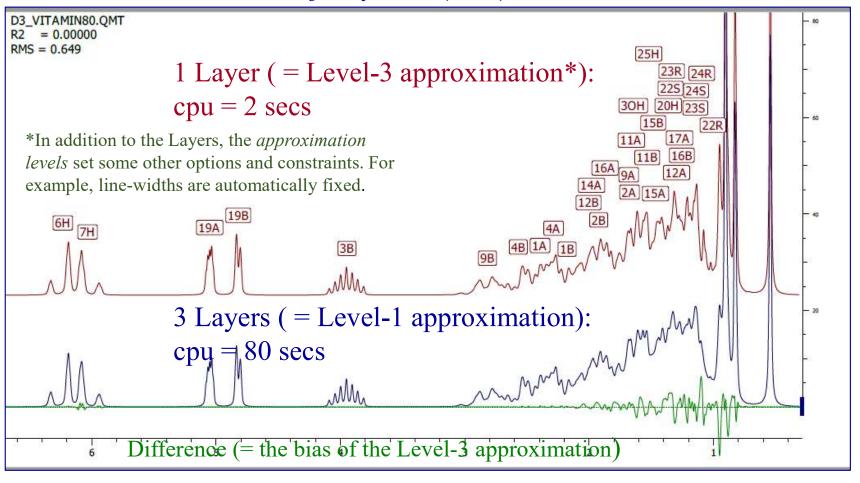
KK'

XX'

BB'


CC'

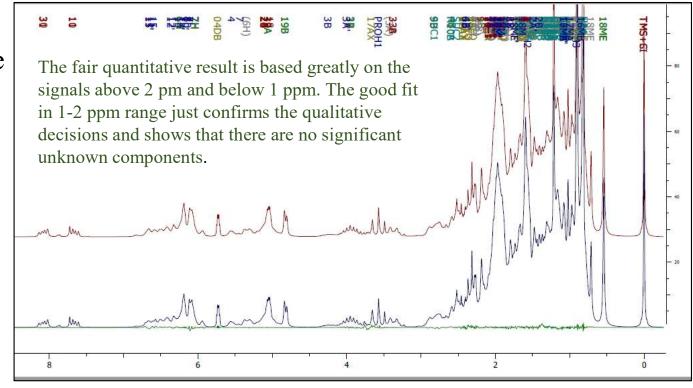
DD'


EE'

The effect is not rare, for example leucine methyl signal has a similar shape. See more at page 10.

How to describe the shape in another way than QMSA, we ask?!

D_3 -vitamin 80 MHz simulation quality and time depend on the number of layers (1-3)



ANALYSIS of MIXTURE of D3-VITAMIN, CALCIFEROL, TESTOSTERONE, CHOLESTEROÉ, A-TOCOPHEROL, MENAQUINONE-7, LUTEIN, DOCOSAHEXAENOICACIDETHYL ESTER (10 mg each) + 1 mg of PROPANOL, SYNTHETIC SPECTRUM at 80 MHZ

The spectrum was simulated at <u>approximation level 2</u> (5 min), then analyzed with <u>highest approximation level 3</u> (< 5 sec/cycle).

When the 250 chemical shifts & line-widths were optimized (to compensate the approximation bias), RMSE dropped from 0.42 to 0.14% and gave concentrations within bias < 3%.

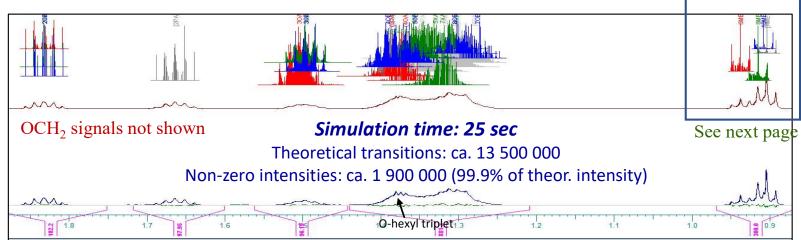
Conclusion: benchtop analyses of large molecule systems can be done in acceptable time.

FELIX* of MILLIONS TRANSITIONS

Experimental: normal ¹H spectrum,

Spin-system of **74** protons:

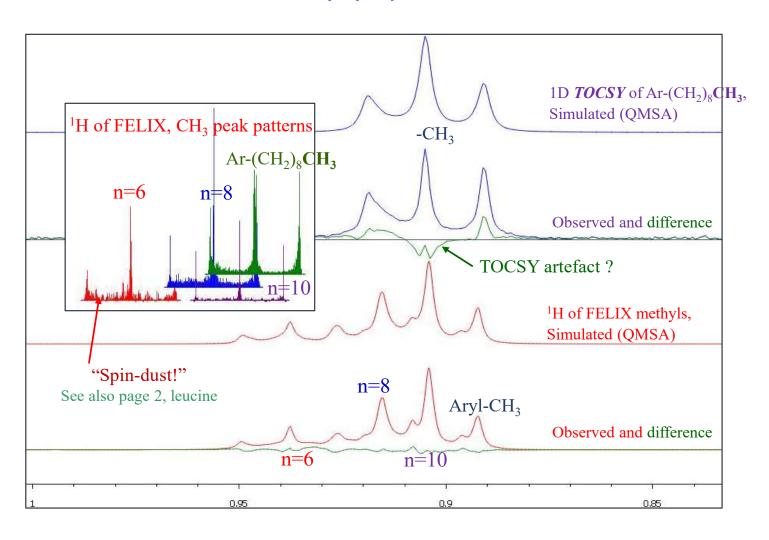
XX'RR'AA'BB'CC'DD'EE' H₃(Ar-octyl) +


XX'RR'ZZ' BB'CC'H₃ (O-hexyl) +

XX'RR'ZZ' BB'CC'DD'EE'H₃ (O-octyl) +

XX'RR'ZZ'BB'(CC')₃DD'EE'H₃ (O-decyl) +

XX'YY'ZZ'


(5 mol% chiral incredient with F was not included in QMSA)

Non-zero intensities: ca. 1 750 000 (93% of theor. intensity), Lines after packing: ca. 135 000 Although the CH_2 -shift order is somewhat unclear, the analysis gives the alkyl lengths with a fair confidence

* S.K.Ahola, L.P.Ingman, R.Laatikainen, J.Sinkkonen & J.P.Jokisaari, ²¹Ne and ¹³¹Xe NMR study of electric field gradients and multinuclear NMR study of the composition of a ferroelectric liquid crystal. *J.Chem.Phys.* **149**, 234901 (2018); https://doi.org/10.1063/1.5052499

The FELIX methyl signal carries the information from the alkyl populations

The Layers is an easy way to define the level of approximation and optimize the calculation time

Full MENU

- 1. Analyse the system at highest approximation level: 1 layer and broadening.
- 2. Remove the broadening and optimize system with 1-2 layers.
- 3. Finalize with 3 layers.